SPATIAL AND TEMPORAL VARIATIONS OF SOIL GAS 220Rn AND 222Rn AT TWO SITES IN NEW JERSEY

Adam R. Hutter
Environmental Measurements Laboratory, U.S. Department of Energy
New York, NY

ABSTRACT

Soil gas 220Rn and 222Rn concentrations have been measured at sites in Chester and Aberdeen, New Jersey. Two years of 222Rn and 220Rn data were obtained from a depth of 0.85 m, followed by two subsequent years from depths of 0.28, 0.56, 0.85 and 1.28 m. 220Rn and 222Rn variations before the first winter that sample tubes were installed were larger than later, indicating that the soil structure, disturbed during installation of the tubes, may significantly redistribute after the first winter, thus ensuring that the sample is drawn from near the bottom of the tube. At the Chester site, autumn 222Rn concentrations were found to be up to 10 times higher than winter values, variations larger than predicted assuming diffusion-only transport. Spatial variations up to an order of magnitude are observed over distances of a few meters. 220Rn concentrations are typically 2 to 3 times higher during summer than during winter. At the Aberdeen site, 220Rn and 222Rn concentrations were about an order of magnitude less than the lowest Chester site values, with no statistically significant temporal or spatial variations observed. Permeability measurements, thought to be an indicator of parameters controlling soil gas 222Rn variations, show no correlation with 220Rn or 222Rn at either site.

INTRODUCTION

The element Rn, discovered in 1900 by Dorn who named it radium emanation, is a gaseous product of the U and Th decay series. There are 20 known isotopes of Rn, with 222Rn, 220Rn, and 219Rn being alpha emitters. 222Rn, colloquially referred to as radon, has a half-life of 3.825 days. 220Rn, commonly termed thoron, has a half-life of 54.5 seconds. 219Rn, known as actinon, has a half-life of 3.92 seconds, too short to be observable in most environmental situations.

It has been estimated that ~10% (or ~13,000 per year) of all lung cancer deaths in the U.S. are directly attributable to exposure to Rn and its decay products (Lubin and Boice 1989). Both 220Rn and 222Rn are significant contributors to the indoor radiation environment; it has been estimated that 10-20% of the effective dose equivalent from all indoor Rn progeny is due to 220Rn progeny (UNSCEAR 1982). The source of indoor Rn in the majority of U.S. homes is the soil gas (Nero and Nazaroff 1984; Sachs et al. 1982; Li et al.; 1992). In addition to studying the source characteristics and dynamics of Rn, the data from the current study will be used in future studies to address the need for a greater understanding of soil gas transport mechanisms, in light of the critical need to understand the migration of pollutants in the vadose zone (Narasimhan et al. 1990; Dorr and Munnich 1990).

This paper details a project aimed to enhance our understanding of the factors, and their interactions, that influence the temporal and spatial variations in soil gas 220Rn and 222Rn, with an emphasis on applying the results to problems of soil gas transport in general. Therefore, the specific goals of this study are to: (1) develop the first data set of long-term variations of soil gas 220Rn concentrations; (2) add to the understanding of long-term variations in soil gas 222Rn concentrations; and (3) study certain aspects of geological setting and soil dynamics that influence soil gas 222Rn and 220Rn concentrations.
The first study to establish that 222Rn and 220Rn are contained in soil gas was performed by Elster and Geitel (Elster and Geitel 1902). Recent investigations of soil gas concentrations of 222Rn have shown temporal and spatial variations to be large and often not well understood showing: (1) high summer and low winter 222Rn (Rose et al. 1990); (2) high winter/spring and low summer/fall (Klusman and Jaacks 1987; Schumann et al. 1989); and (3) no annual pattern (Fleischer et al. 1980).

The dominant process of 222Rn migration under most conditions has generally been accepted to be diffusion (Tanner 1980; Schroeder 1965). The diffusion length (defined as the distance in which an e-fold decrease in 222Rn concentration occurs) depends upon the diffusion coefficient and the 222Rn decay constant. The diffusion coefficient depends on soil parameters and atmospheric variables such as humidity, porosity, barometric pressure, wind, precipitation, etc. (Kvasnicka 1980), and can be theoretically determined from the soil water saturation fraction (Rogers and Nielson 1991). For dry soil of normal porosity, a typical diffusion length is ~ 1 m, which translates into an upper limit of 222Rn transport on the order of a few meters (Tanner 1964). However, it has been shown that in soils with connected air-filled pores, bulk flow processes may be locally significant (Fleischer and Mogen-Campero 1979). If 222Rn migration is caused by a flow of soil air, i.e., advection, 222Rn transport distances can exceed 100 m (Malqvist and Kristiansson 1984). It is thought that 222Rn entry into houses is largely controlled by advection resulting from a pressure stack effect induced by a temperature difference between the building and soil (Nazaroff 1992).

The soil gas 222Rn concentration described by simple diffusion can be modified by many factors, including temperature (Okabe 1956; Krarner et al. 1964; Wilkening et al. 1972; Megumi and Mamuro 1973; Colle et al. 1981; Washington and Rose 1992), barometric pressure (Rudakov 1985; Clements and Wilkening 1974), precipitation (Fleischer and Mogen-Campero 1979), wind direction and speed (Krarner et al. 1964), soil moisture (Washington and Rose 1990), soil porosity and permeability (Nazaroff and Sextro 1989). Additionally, bedrock type and structure, as well as uranium and uranium progeny concentrations and distributions in the rock and soil, can also affect 222Rn concentrations (Washington and Rose 1992).

A model incorporating temperature effects of soil gas 222Rn concentration variations is given by Washington and Rose (1990) for depths below which diffusional transport to the surface is negligible, i.e., ~ 1 m:

$$C_{Rn} = 10^4 C_{Ra} E \rho_b / [P(F(K_T - 1) + 1)$$

where: $C_{Rn} = $ 222Rn concentration, Bq m$^{-3}$; $C_{Ra} =$ parent concentration, Bq kg$^{-1}$; $E =$ emanation coefficient; $\rho_b =$ dry bulk density; $P =$ water saturation fraction; $K_T =$ partition coefficient of 222Rn between unit volumes of air and water, C_{water}/C_{air} (values vary from 0.525 at 0 °C to 0.226 at 25 °C (Battino 1979)); $P =$ volume fraction of total pore space (porosity). Variations in the 222Rn concentration of up to a factor of about four can be accounted for due to effects of F and K_T. For a warm (25 °C) and moist ($F = 0.95$) soil with $C_{Ra} = 30$ Bq/kg, $E = 0.2$, and $\rho = 1.5$ g cm$^{-3}$, the 222Rn concentration is calculated to be 78.3 kBq m$^{-3}$ (2116 pCi L$^{-1}$), but when cold (0°C) and dry ($F = 0.05$), the 222Rn concentration is calculated to be 21.2 kBq m$^{-3}$ (573 pCi L$^{-1}$).

MATERIALS AND METHODS

Site descriptions

Fig. 1 shows the locations of the two New Jersey field sites. The Chester site is located on the edge of the Reading Prong in central northern New Jersey. The site is situated in an open grassy field on the side of a hill, and is underlain by granitic gneiss. Solid-walled, stainless steel tubes of 0.95 cm I.D. and 0.85 m length were permanently installed at six sampling locations at this site in September, 1989. These tubes were emplaced so that they are flush with the surface, and flexible tubing is attached for sample connections. The sampling tubes (referred to as positions 1, 2, 3a, 4a, 5 and 6) are each spaced linearly ~ 3 m apart, with an additional sampling tube (3b and 4b) placed at two of the locations. Positions 3a and 3b are ~ 6 cm apart, as are positions 4a and 4b. Additionally, in August, 1992, tubes were emplaced at positions 2 and 5 for sampling depths of 0.28, 0.56 and 1.28

1995 International Radon Symposium IV - 4.2
m. These positions were chosen because of differences observed in the first 2 years of data, specifically, position 2 showed strong seasonal variations in the soil gas ^{220}Rn and ^{222}Rn concentrations, whereas position 5 did not.

The Aberdeen site is located on the border of the Coastal Plain and Piedmont provinces, with one layer of coastal plain sediments, mainly sand and gravel, to a depth of \sim 20 m. Four sampling tubes (0.95 cm I.D., 0.85 m length), arranged linearly and spaced \sim 3 m apart (referred to as positions 1, 2, 3, and 4a) with one additional sampling tube (referred to as position 4b), were emplaced in May, 1990. The sampling tubes at positions 4a and 4b are \sim 6 cm apart. Tubes for 0.28, 0.56 and 1.28 m depth sampling were emplaced at positions 4a and 4b in November, 1993. There is virtually no vegetation in the area surrounding the positions at the Aberdeen site.

Sampling

The field procedures used in this study are reported in the EML Procedures Manual (in press). Briefly, a soil gas sample is collected into a 165 mL scintillation cell using a battery-operated pump at a flow rate of \sim 2 L min$^{-1}$ for 1 min. Sampling was performed on a bi-weekly frequency and the samples were analyzed for ^{220}Rn and ^{222}Rn. Additionally, a flow meter and pressure gauge were used to estimate soil permeability in order to indirectly determine the effects of changes in soil moisture and porosity on the ^{220}Rn and ^{222}Rn concentrations (Nazaroff and Sextro 1989). Permeabilities of typical soils range over six orders of magnitude, with diffusion being the dominant process at the low end and advection being dominant at the high end. The soil permeability (k) for each position was estimated from flow and pressure differential measurements at the time of sampling using the following equation (Rogers and Nielson 1991):

$$k = \frac{(5.2 \times 10^{-4} \cdot Q)}{\Delta P} \tag{2}$$

where $k =$ soil permeability (m2), $Q =$ flow rate (m3 s$^{-1}$), and $\Delta P =$ suction pressure (Pa)

^{220}Rn and ^{222}Rn Analysis

The methodology for the ^{220}Rn and ^{222}Rn analyses used in this project is detailed and discussed in Hutter (1995). In summary, the method requires a 1-min count as soon as the sample has been drawn into a scintillation cell, and a 5- or 10-min count at least 5 minutes after the soil gas sample has been obtained. The ^{222}Rn concentration is determined from the second count. Once the ^{222}Rn concentration is determined, the counts due to ^{222}Rn and progeny during the 1-min count can be calculated and subtracted from the total in the 1-min count. The remaining counts in the 1-min count are due to ^{220}Rn and progeny. The overall uncertainty when using this method to measure typical soil gas ^{222}Rn and ^{220}Rn concentrations, i.e., \sim 3 kBq m$^{-3}$ (80 pCi L$^{-1}$) was calculated to be 18.9% and 10.6% (90% confidence levels), respectively, from analyses of duplicate field measurements (180 for ^{222}Rn and 138 for ^{220}Rn). The lowest ^{220}Rn concentrations that can be measured using this technique while maintaining an overall error no greater than about 30% are \sim 500 Bq m$^{-3}$ (13 pCi L$^{-1}$). The ^{220}Rn measurement uncertainty can be decreased if multiple measurements are obtained and are the results arithmetically averaged.

In order to better characterize each site, the soil depth and/or depth to bedrock was determined using an electrical resistivity method. At the Chester site, the soil thickness was found to be \sim 2 m, below which is granitic gneiss bedrock. At the Aberdeen site, there is a \sim 20 m thick single-layer of Cretaceous lignitic sands, below which is assumed to be basement rock.

Quality Assurance

Quality assurance of the soil gas ^{220}Rn and ^{222}Rn data was assessed by the following tasks:

1. Calibrations performed on a semi-annual basis in the EML Radon, Thoron, and Progeny Exposure Facility following standard procedures (HASL-300 1992);
2. background measurements performed on all cells for every measurement;
3. duplicate measurements performed at a rate of 1 in 10;
4. replicate counting of samples at a rate of 1 in 10; and
5. error analysis of soil gas ^{222}Rn and ^{220}Rn measurements.
RESULTS

In order to measure the reproducibility of any observed seasonal variations, at least 2 years of data for any sampling location is needed. Soil gas ^{222}Rn measurements were obtained from the Chester site beginning in September, 1989 and continue to the present. Soil gas ^{220}Rn measurements began in March, 1990 at this site. The ^{222}Rn and ^{220}Rn data, as well as the soil permeability data, collected over this period at a depth of 0.85 m from the Chester site, are presented in Fig. 2. At the Aberdeen site, soil gas ^{222}Rn and ^{220}Rn concentrations and permeability data, obtained at a 0.85 m depth from May, 1990 until May, 1992, are presented in Fig. 3.

The soil gas ^{220}Rn and ^{222}Rn data from the profiled samples, i.e., depths of 0.28, 0.56, 0.85 and 1.28 m (at positions 2 and 5 at the Chester site, positions 4a and 4b at the Aberdeen site) are shown in Figs. 4 through 7, while Fig. 8 shows the soil permeability data obtained at these positions during these times.

Table 1 shows a statistical summary of ^{220}Rn and ^{222}Rn concentrations for the Chester, NJ site. Fourier analyses were performed on the Chester data in order to examine any seasonal cycles. The ratio of high to low values calculated following these analyses are shown in Table 1, as well as the day of the year when the maximum concentration was found following a fit of the transformed data.

<table>
<thead>
<tr>
<th>Position</th>
<th>Isotope</th>
<th>Depth (m)</th>
<th>Min (kBq m^{-3})</th>
<th>Max (kBq m^{-3})</th>
<th>Mean (kBq m^{-3})</th>
<th>StDev (kBq m^{-3})</th>
<th>High-Low Fourier Fit</th>
<th>Max D.O.Y.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>^{222}Rn</td>
<td>0.85</td>
<td>119</td>
<td>483</td>
<td>268</td>
<td>98</td>
<td>2.2</td>
<td>355</td>
</tr>
<tr>
<td>1</td>
<td>^{220}Rn</td>
<td>0.85</td>
<td>133</td>
<td>302</td>
<td>210</td>
<td>40</td>
<td>1.4</td>
<td>220</td>
</tr>
<tr>
<td>2</td>
<td>^{222}Rn</td>
<td>0.28</td>
<td>7</td>
<td>419</td>
<td>108</td>
<td>100</td>
<td>17.5</td>
<td>285</td>
</tr>
<tr>
<td>2</td>
<td>^{220}Rn</td>
<td>0.28</td>
<td>38</td>
<td>280</td>
<td>160</td>
<td>57</td>
<td>2.1</td>
<td>215</td>
</tr>
<tr>
<td>2</td>
<td>^{222}Rn</td>
<td>0.56</td>
<td>34</td>
<td>557</td>
<td>188</td>
<td>132</td>
<td>7.9</td>
<td>295</td>
</tr>
<tr>
<td>2</td>
<td>^{220}Rn</td>
<td>0.56</td>
<td>68</td>
<td>505</td>
<td>186</td>
<td>68</td>
<td>2.5</td>
<td>215</td>
</tr>
<tr>
<td>2</td>
<td>^{222}Rn</td>
<td>0.85</td>
<td>31</td>
<td>832</td>
<td>276</td>
<td>196</td>
<td>8.4</td>
<td>295</td>
</tr>
<tr>
<td>2</td>
<td>^{220}Rn</td>
<td>0.85</td>
<td>62</td>
<td>824</td>
<td>180</td>
<td>59</td>
<td>1.8</td>
<td>240</td>
</tr>
<tr>
<td>2</td>
<td>^{222}Rn</td>
<td>1.28</td>
<td>419</td>
<td>1344</td>
<td>775</td>
<td>201</td>
<td>1.5</td>
<td>280</td>
</tr>
<tr>
<td>2</td>
<td>^{220}Rn</td>
<td>1.28</td>
<td>224</td>
<td>1112</td>
<td>480</td>
<td>148</td>
<td>1.5</td>
<td>240</td>
</tr>
<tr>
<td>3a</td>
<td>^{222}Rn</td>
<td>0.85</td>
<td>107</td>
<td>1672</td>
<td>937</td>
<td>292</td>
<td>1.7</td>
<td>345</td>
</tr>
<tr>
<td>3a</td>
<td>^{220}Rn</td>
<td>0.85</td>
<td>170</td>
<td>944</td>
<td>487</td>
<td>146</td>
<td>1.8</td>
<td>255</td>
</tr>
<tr>
<td>3b</td>
<td>^{222}Rn</td>
<td>0.85</td>
<td>82</td>
<td>1125</td>
<td>607</td>
<td>234</td>
<td>1.6</td>
<td>325</td>
</tr>
<tr>
<td>3b</td>
<td>^{220}Rn</td>
<td>0.85</td>
<td>158</td>
<td>709</td>
<td>351</td>
<td>122</td>
<td>1.8</td>
<td>350</td>
</tr>
<tr>
<td>4a</td>
<td>^{222}Rn</td>
<td>0.85</td>
<td>41</td>
<td>723</td>
<td>298</td>
<td>163</td>
<td>2.2</td>
<td>275</td>
</tr>
<tr>
<td>4a</td>
<td>^{220}Rn</td>
<td>0.85</td>
<td>103</td>
<td>658</td>
<td>280</td>
<td>106</td>
<td>1.5</td>
<td>235</td>
</tr>
<tr>
<td>4b</td>
<td>^{222}Rn</td>
<td>0.85</td>
<td>25</td>
<td>621</td>
<td>267</td>
<td>162</td>
<td>1.9</td>
<td>280</td>
</tr>
<tr>
<td>4b</td>
<td>^{220}Rn</td>
<td>0.85</td>
<td>118</td>
<td>447</td>
<td>253</td>
<td>75</td>
<td>1.1</td>
<td>230</td>
</tr>
<tr>
<td>5</td>
<td>^{222}Rn</td>
<td>0.28</td>
<td>18</td>
<td>425</td>
<td>107</td>
<td>84</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>^{220}Rn</td>
<td>0.28</td>
<td>31</td>
<td>245</td>
<td>142</td>
<td>49</td>
<td>1.5</td>
<td>210</td>
</tr>
<tr>
<td>5</td>
<td>^{222}Rn</td>
<td>0.56</td>
<td>11</td>
<td>477</td>
<td>175</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>^{220}Rn</td>
<td>0.56</td>
<td>85</td>
<td>600</td>
<td>197</td>
<td>76</td>
<td>1.7</td>
<td>218</td>
</tr>
<tr>
<td>5</td>
<td>^{222}Rn</td>
<td>0.85</td>
<td>42</td>
<td>678</td>
<td>354</td>
<td>128</td>
<td>1.3</td>
<td>270</td>
</tr>
<tr>
<td>5</td>
<td>^{220}Rn</td>
<td>0.85</td>
<td>86</td>
<td>433</td>
<td>242</td>
<td>80</td>
<td>1.6</td>
<td>225</td>
</tr>
<tr>
<td>5</td>
<td>^{222}Rn</td>
<td>1.28</td>
<td>267</td>
<td>994</td>
<td>636</td>
<td>142</td>
<td>1.1</td>
<td>270</td>
</tr>
<tr>
<td>5</td>
<td>^{220}Rn</td>
<td>1.28</td>
<td>111</td>
<td>806</td>
<td>296</td>
<td>111</td>
<td>1.2</td>
<td>275</td>
</tr>
<tr>
<td>6</td>
<td>^{222}Rn</td>
<td>0.85</td>
<td>131</td>
<td>699</td>
<td>339</td>
<td>123</td>
<td>1.4</td>
<td>330</td>
</tr>
<tr>
<td>6</td>
<td>^{220}Rn</td>
<td>0.85</td>
<td>152</td>
<td>494</td>
<td>297</td>
<td>76</td>
<td>1.5</td>
<td>220</td>
</tr>
</tbody>
</table>

1995 International Radon Symposium IV - 4.4
DISCUSSION

Chester, NJ site
A first inspection of the data shows some obvious trends (Fig. 2a). 222Rn concentrations vary among all the positions by nearly two orders of magnitude. The values observed ranged from a low of 30 kBq m$^{-3}$ to a high of 1672 kBq m$^{-3}$ (810 to 45,200 pCi L$^{-1}$). Position 3a had the highest 222Rn concentration for each measurement day, followed closely by 3b, two positions that were only ~ 6 cm apart. Positions 4a and 4b, on the other hand, typically had the lowest 222Rn values. Positions 5 and 6 were normally higher than positions 1 and 2. These consistent spatial variations are probably due to inhomogeneous parent nuclide concentration in the soil, rather than due to variables such as soil moisture changes. The parent nuclide concentrations have not been measured at each position because doing so would require permanent destruction of the soil, and studies are ongoing. However, surface gamma-spectra show inhomogeneity at this site, which is assumed to be present at depth as well (Miller pers. comm.).

The highest correlations in the 222Rn concentrations at the Chester site are between duplicate pair positions, specifically, positions 4a and 4b, and positions 3a and 3b, with correlation coefficients (r) of 0.96 and 0.85, respectively. A trend of decreasing 222Rn correlation coefficients with increasing distance between the positions is also observed. For example, the highest 222Rn correlation coefficient for position 1 is with position 2 (r ~ 0.8), with the next nearest positions, 3 and 4, having smaller correlation coefficients (r ~ 0.6), and positions 5 and 6 even less (r ~ 0.3). This trend is observed in nearly all the 222Rn data for each position.

Seasonal cycles in the 222Rn concentrations can be seen with the lowest values occurring approximately from December until March, with increasing values from early spring until late autumn when the highest values are observed. 222Rn concentrations from position 2 show the strongest seasonal trend with a greater than 10-fold increase from low to high seasons. Positions 4a and 4b show a five-fold variation, whereas positions 1, 3a, and 3b show more modest seasonal variations on the order of two to three fold-variations from high to low values. Positions 5 and 6 show suspect, at best, seasonal cycles.

Another observation with important consequences occurs in the data when the tubes were first emplaced in the fall of 1989. As can be seen, until the winter period ended, the variations observed in the soil gas 222Rn concentrations are very large compared to after this period. The widely variable concentrations are thought to be due to the disruption of the soil structure when the tubes were emplaced. During these first few months, there may have been cavities along the outside tube walls, that allowed soil gas from shallower depths, with lower concentrations, to reach the end of the tube and be sampled. After the freezing and thawing of the soil occurred during the winter months, the soil may have settled sufficiently to seal these cavities and ensure that the soil gas being sampled was from near the 0.85 m depth of the tube end. Soil permeability variations (see Figs. 2 and 8) corroborate this hypothesis. These data indicate that a one-time sampling of the soil gas by emplacing a tube into the soil and taking a sample of the soil gas may not give an accurate assessment of the soil gas 222Rn concentration from the depth of sampling.

The 220Rn data for the Chester site look very different than the 222Rn data (Fig. 2b). The spatial variations among the positions are much less, with a total range of 62 to 944 kBq m$^{-3}$ (1675 to 25500 pCi L$^{-1}$), and also with less temporal variations. Seasonal cycles can be observed at some of the positions, i.e., positions 2, 3a and 4b, with two to three-fold variations, but not at others. The seasonal variations in 220Rn are not similar to the observed 222Rn variations. The 220Rn concentrations are again lowest during the winter months, but are highest in the summer months, gradually decreasing during the fall, in contrast to the 222Rn concentration variations that increased virtually all summer and into the fall. The magnitude and timing of these observed seasonal cycles in the 220Rn concentration closely match trends expected assuming diffusion-only transport. However, even if advective processes were occurring in the soil gas at the Chester site, the transport distance of 220Rn is so short, due to its short half-life, that the seasonal cycles would still be expected to follow diffusional equations.
The 220Rn correlation coefficients between positions for the Chester site do not exhibit the same trends as observed for 222Rn. The 220Rn correlation coefficients are smaller than for 222Rn, with the highest being ~ 0.6, and they average 0.47 for all the positions with a standard deviation of 0.13. Additionally, there are no discernible trends with spatial distribution, which is to be expected since there were fewer temporal and spatial variations in the cumulative data for 220Rn than for 222Rn.

In an attempt to understand the relative importance of the measured factors affecting the observed 222Rn and 220Rn variability in the soil gas, correlations were performed for all of the positions at the Chester site for each measured parameter (223Rn, 220Rn and permeability) with available on-site meteorological data, i.e., temperature, barometric pressure, wind speed, and relative humidity. Unfortunately, sufficient meteorological data is only available for the 1990-1992 period, coinciding with the period when data was obtained at the 0.85 m depth. These analyses do not show strong correlations between Rn concentrations and the meteorological parameters. A few of the correlations of temperature with 222Rn and/or 220Rn have an r value of about 0.5, expected due to the seasonal variations in the 222Rn and 220Rn concentrations observed at some of the positions. The barometric pressure shows virtually no correlation with any of the other measured parameters. Relative humidity effects on the soil gas 222Rn and 220Rn concentrations are minimal, at best. Poor correlations among the meteorological parameters and soil gas 222Rn and 220Rn concentrations were expected, since atmospheric and meteorological effects on the soil gas 222Rn and 220Rn concentrations are small at the sampling depth of 0.85 m. If sufficient meteorological data were available for subsequent years, the variations observed in 222Rn concentrations at shallow depths would be expected to correlate better with temperature and pressure than was observed for the 0.85 m data.

In 1992 tubes of 0.28, 0.56 and 1.28 m depth were added to the existing 0.85 m depth tubes at positions 2 and 5 at the Chester site. These profiled 220Rn and 222Rn data show consistent trends with the earlier data from the 0.85 m depth (see Figs. 4 and 5). For instance, variations in the 220Rn and 222Rn soil gas concentrations were much larger during the first few months that the tubes were installed compared to after the first winter, as were soil permeability variations. Seasonal patterns are found at position 2 for depths 0.28, 0.56 and 0.85 m, but not at the 1.28 m depth, where over a 2-year period the arithmetic mean is 775 kBq m$^{-3}$ with a standard deviation of 200 kBq m$^{-3}$, which is only about twice the uncertainty in a single 222Rn measurement. The magnitude of the seasonal 222Rn concentration variations decrease with increasing depth at both positions. For position 2 at the 0.28 m depth, the seasonal variation is > 10 fold, whereas at the 0.56 and 0.85 m depths the seasonal variations are ~ 7 to 8 fold. The pattern of increasing 222Rn concentration throughout the summer and fall, with a drastic decrease during early winter, observed in the earlier 0.85 m data, is followed at the 0.28, 0.56, and 0.85 m depths. The seasonal variations in the 220Rn concentrations are more modest, ~ 2 fold, with the highest concentrations occurring during the summer. In both the 220Rn and 222Rn profiled data, there is a marked difference in concentration magnitude at the 1.28 m depth compared to the shallower depths. This pattern is attributed to a soil horizon change, which typically occurs at ~ 1 m for this soil type and region.

As is consistent with the previous data obtained at the 0.85 m depth at position 5, no seasonal patterns are discernible in the profiled data at this position (see Fig. 5a). The 222Rn concentration increases with increasing depth, with arithmetic means and standard deviations of 109 ± 84, 175 ± 100, 354 ± 128 and 636 ± 142 kBq m$^{-3}$ at depths of 0.28, 0.56, 0.85 and 1.28 m, respectively. The 220Rn concentrations, shown in Fig. 5b, also show increases with depth, with arithmetic means and standard deviations of 142 ± 49, 197 ± 76, 242 ± 80 and 296 ± 111 kBq m$^{-3}$ at depths of 0.28, 0.56, 0.85 and 1.28 m, respectively. Due to its short half-life and limited transport distance, the 220Rn sampled was generated very close to the end of the sampling tube, in comparison to 222Rn that may have been transported significant distances. From the 220Rn and 222Rn data, there seems to be a soil horizon change between the 0.85 m and 1.28 m depth.

The mechanism of transport mode has been hypothesized to be largely dependent upon the permeability of the soil, i.e., soil permeability may be a good indicator of the dominant transport mode. At permeabilities $> 10^{11}$ m2, advective transport is thought to occur, whereas diffusive transport is thought to be dominant at permeabilities $< 10^{11}$ m2 (Nazaroff and Sextro, 1989). Since 222Rn variations are observed that are larger than can be explained by diffusion alone, a correlation of 222Rn with permeability was expected to show that advection may be important as a
control of soil gas 222Rn variations. These correlations are, however, for the most part, very poor, e.g., $r < 0.25$ (soil permeability data are presented in Figs. 2 and 8). These poor correlations suggest that either soil permeability, as measured using the technique described, is not a good indicator of parameters thought to have strong effects on the soil gas 222Rn and 220Rn concentrations (e.g., soil moisture, porosity), or that these factors themselves are not as important in controlling the soil gas 222Rn and 220Rn concentrations as has been thought. With the data obtained it is not possible to test these scenarios.

Aberdeen, NJ site

The magnitude of the 222Rn and 220Rn concentrations obtained at the Aberdeen site are about one order of magnitude less than those observed at the Chester site (see Figs. 3, 6 and 7). In addition, both spatial and temporal variations are much smaller with essentially constant 222Rn concentration values over the entire 4 year period. There is a broader band of 220Rn concentration variation at the Aberdeen site, shown in Figs. 6b and 7b, but this is due to the higher error associated with the 220Rn measurements compared to the 222Rn measurements. The lack of seasonal variations in the 222Rn and 220Rn concentrations is thought to be due to the soil being very well-drained, and thus, having little seasonal variation in soil moisture, thought to be a major factor affecting variations in soil gas 222Rn and 220Rn. At this site, the 1σ of the 222Rn and 220Rn measurements taken as a whole are 19% and 36%, respectively, i.e., 12.2 ± 2.3 kBq m$^{-3}$ (330 \pm 63 pCi L$^{-1}$) and 9.4 ± 3.4 kBq m$^{-3}$ (250 \pm 92 pCi L$^{-1}$). These values are about twice the 1σ error of the duplicate measurements used for the total soil gas measurement uncertainty.

Both the 222Rn and the 220Rn correlation coefficients for the Aberdeen site are small compared to the Chester site (average ~ 0.3), and in general show no strong relationships, except for the 222Rn between positions 2 and 3 ($r \sim 0.7$). No trends among the 222Rn and 220Rn concentrations at the Aberdeen site were expected since the site is fairly homogeneous, i.e., all measurements have essentially been sampled from a normally distributed population.

The profiled 220Rn and 222Rn data, shown in Figs. 6 and 7 (tubes of 0.28, 0.56, and 1.28 m depth were installed in 1993), also show no seasonal cycles. Taking the data obtained from positions 4a and 4b collectively (the tubes are only ~ 6 cm apart) the 222Rn concentration increases with increasing depth, with arithmetic means of 6.6, 8.8, 11.0, and 13.4 kBq m$^{-3}$, respectively at the 0.28, 0.56, 0.85 and 1.28 m depths. The 220Rn concentrations seem to be similar for all depths, with arithmetic means of 6.9, 4.5, 8.1, and 8.8 at the depths of 0.28, 0.56, 0.85 and 1.28 m, respectively.

Once again, variations in soil gas 220Rn and 222Rn concentrations do not show good correlations with measured soil permeability variations (see Figs. 3 and 8).

CONCLUSIONS

A one-time sample of soil gas for the purpose of measuring 222Rn and 220Rn concentrations as a source term for indoor concentrations may be accurate only to an order of magnitude due to seasonal effects and the disruption of the soil structure.

222Rn concentrations at the Chester site are highest during September/October, corroborating previous research and supporting the speculation that wintertime testing of indoor 222Rn concentrations may not give the most conservative estimate of exposure, as is desired. Some 222Rn variations are too large to be adequately explained by diffusion-only models. Spatial variations in the soil gas 222Rn and 220Rn concentrations can be large (up to an order of magnitude) over distances of ~ 3 m.

At the Aberdeen site, no seasonal 222Rn variations are observed, also corroborating previous research.

Long-term cycles in the soil gas 220Rn concentration have been established at two geologically different sites. The highest soil gas 220Rn concentrations occur during mid-summer, coinciding with predictions from diffusion-only models. The controlling parameters of these variations are thought to be local soil conditions, such as soil moisture, water saturation fraction and temperature, among others.
Permeability measurements, thought to be a major indicator of parameters controlling soil gas 222Rn variations, show no correlation with 222Rn or 220Rn at any of the sites. This perhaps indicates that soil permeability, as measured, does not accurately reflect parameters thought to control soil gas 220Rn and 222Rn, i.e., soil moisture and porosity.

ACKNOWLEDGMENTS

The author would like to thank EML reviewers A. Cavallo, H. Feely, and H. Beck and anonymous reviewers for constructive suggestions which markedly improved the paper. The EML editor, N. Chieco, is thanked for once again paying timely attention to detail. The author is especially grateful to H. Feely for guidance he provided.

REFERENCES

Dorr, H.; Munnich, K. O. 222Rn flux and soil air concentration profiles in West Germany. Soil 222Rn as tracer for gas transport in the unsaturated zone. Tellus, 42B:20-28; 1990.

Miller, K. Personal communication. USDOE, Environmental Measurements Laboratory, New York; 1995.

Fig. 1. Map of New Jersey showing location of sampling sites.
Fig. 2. 220Rn, 222Rn and permeability data from the Chester site obtained from 0.85 m depth tubes from September, 1989 to May, 1992. Position 1 data are shown in (a), (b) shows position 2 data, (c) shows position 3a data, (d) shows position 3b data, (e) shows position 4a data, (f) shows position 4b data, (g) shows position 5 data, and (h) shows position 6 data.
Fig. 2. Con’t.

(2c)

Permeability

\(\text{Rn (kBq m}^{-3} \text{)} \)

\[\begin{array}{ll}
\text{222Rn} & \text{perm} \\
\hline
\text{220Rn} &
\end{array} \]

(2d)

1995 International Radon Symposium IV - 4.13
Fig. 3. 220Rn, 222Rn and permeability data from the Aberdeen site obtained from 0.85 m depth tubes from May, 1990 to May, 1992. Position 1 data are shown in (a), (b) shows position 2 data, (c) shows position 3 data, (d) shows position 4a data, and (e) shows position 4b data.
Fig. 3. Cont'

Rn (kBq m$^{-3}$)

(3e)

Permeability (m2 E-12)

- 222
- perm
- 220

1995 International Radon Symposium IV - 4.18
Fig. 4. 222Rn (a) and 226Rn (b) from the Chester site position 2 obtained from 0.28, 0.56, 0.85 and 1.28 m depths from August, 1992 to March, 1995.
Fig. 5. ^{222}Rn (a) and ^{220}Rn (b) from the Chester site position 5 obtained from 0.28, 0.56, 0.85 and 1.28 m depths from August, 1992 to March, 1995.
Fig. 6. ^{222}Rn (a) and ^{220}Rn (b) from the Aberdeen site position 4a obtained from 0.28, 0.56, 0.85 and 1.28 m depths from November, 1993 to March, 1995.
Fig. 7. 222Rn (a) and 220Rn (b) from the Aberdeen site position 4b obtained from 0.28, 0.56, 0.85 and 1.28 m depths from November, 1993 to March, 1995.
Fig. 8. Permeability data from the Chester site position 2 (a) and position 5 (b) obtained from August, 1992 to March, 1995 and from Aberdeen site position 4a (c) and position 4b (d) obtained from November, 1993 to March, 1995.